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Summary. The partitioning of  ground-state atoms or Ions into inner spherical cores 
with radius r b and outer valence regions extending from r b to infinity is explored with 
the help of  the expression E v = ½(T v + 2V v) for the valence-region energy (where 
T v and V v are, respectively, the kinetic and potential energies of  the 'valence elec- 
trons' N v found beyond the boundary surface defined by r b) using also the appropriate 
expression for /~ion, the energy of  the ion left behind after removal of  the valence 
electrons. E v and E i°n are meaningful only for discrete numbers, N c, of electrons 
assigned to the core, namely, when the exchange integrals, K cv, between N c and N v 
total (or at least closely approach) 0, i.e., for N ~ = 2 e or N c = 2 and 10 e for the 
first- or second-row elements, respectively. 
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1 Introduction 

The partitioning of ground-state atoms or ions into core and valence regions reflects the 
old idea that chemical properties are largely governed by the outer (or valence)  atomic 
regions, i.e., by what we shall call valence electrons. Though intuitively appealing, this 
partitioning is not cast in formal theory. The question as to whether a core-valence 
separation can be defined in a physically meaningful way is thus sensible. Surely, 
introduction of  a suitable criterion is required to provide an acceptable operational 
definition. 

A familiar way of handling this question is offered by the notion of e lec tronic  

shel ls .  By definition, an electronic shell collects all the electrons with the same prin- 
cipal quantum number. The K shell, for example, is made of ls  electrons, the L shell 
collects the 2s and 2p electrons, etc. The valence shell thus consists of  the last occu- 
pied electronic shell, while the core  consists of all the inner shells. This segregation 
into electronic shells is justified by the well-known order of the successive ionization 
potentials of  the atoms. 

Now, in what we call the H a r t r e e - F o c k  orb i ta l  space  - or simply orbi ta l  space  - 

the total energy is partitioned from the outset into orbital energies, ei = Cts, e2~, etc. 

* Part of the projected Ph.D. dissertation of N. D. 
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So we can always consider a collection of electrons and deduce their total energy from 
the appropriate sum of their orbital energies, remembering, however, that one must 
also correct for the interelectronic repulsions which are doubly counted in any sum of 
Hartree-Fock eigenvalues. No special problem arises with core-valence separations in 
the orbital space but it is still up to us to select the core (or valence) electrons as seems 
appropriate. It appears reasonable to use the order of orbital energies as a guideline 
and thus to consider the ls  2 electrons as the core of the first-row elements or the 
1 s 2, 2s 2 and 2p 6 electrons for the second row. Briefly, we re-encounter the familiar 
shell model. Finally, let us mention that the essence of the so-called 'pseudopotential' 
methods [1] is to replace core electrons by an appropriate operator. The point is that 
the core-valence partitioning involved in these methods refers to the same orbital 
space as the corresponding all-electron calculations. 

What now if we abandon the orbital-by-orbital electron partitioning in favor of  a 
description based on the stationary ground-state electron density p(r)? Clearly, this 
will oblige us to redefine the core-valence separation. In sharp contrast with what was 
done in orbital space, we will need a partitioning in real space. We consider an inner 
spherical core, centered at the nucleus, with radius r b, and an outer valence region 
extending from r b to infinity. The number of core electrons, N c, is then 

fo Tb N c = 4zr r2p(r) dr (1) 

where p(r) is the electron density I at a distance r from the nucleus with charge Z. 
The definition of  N c now rests with the definition of  the proper r b. A number of 
suggestions were offered to that effect [3]-[13].  Let us briefly examine them. 

Politzer et al. [3]-[5]  define the 'average ionization potential at the point r '  

i p(r) 

where pi(r) is the electron density of the orbital with energy ci and p(r) = ~ pi(r) 
is the total electron density at the point r. f can be interpreted as the average energy 
required for the removal of  one electron from the point r of an atom or a molecule. 
In ground-state atoms,/= decreases in a piecewise manner along the coordinate r [5] 
and the regions between the inflexion points may be taken as electron shells. Indeed, 
the numbers of  electrons contained in the sphere with radius r b, Eq. (1), are close to 
2 for the first-row elements (e.g., 2.033 e for carbon and 2.030 e for neon) or close 
to 2 and 10 e for the larger atoms (e.g., 2.011 and 10.068 e for argon) 2. 

The 'average local electrostatic potential', V(r)/p(r), introduced by Politzer [6] 
led Sen and coworkers [7] to propose the conjecture that the global maximum in 
V(r)/p(r) defines the location of  the core-valence separation in ground-state atoms. 
Using this criterion, one finds N c values, Eq. (1), of 2.065 and 2.112 e for carbon 
and neon, respectively, and 10.073 e for argon, which are reasonable estimates in 
light of  what we know about the electronic shell structure. Politzer [6] also made the 
significant observation that V(r)/p(r) has a maximum any time the radial distribution 
function, D(r) = 4rcr2p(r), is found to have a minimum. 

1 We write p(r) = p(r) because of the spherical symmetry of the electronic density; see [2]. 
2 This result is well substantiated for the atoms Li-Ca but less clear for atoms with d electrons, probably 

because of the interpenetration of sub-shells in the heavier atoms [4]. 
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This minimum of D(r) plays a major role in the Politzer-Parr approximation [9] 3 
for the valence-region energy of ground-state atoms 

E v = - ~ ( Z  - N c) &rrp(r)dr (2) 
b 

where the boundary surface separating the inner core and the outer valence regions is 
taken at r b = rmin,  i . e . ,  at the minimum of the radial distribution function. In Hartree- 
Fock calculations, minima of  D(r) occur approximately at the 'right places' (from 
the viewpoint of  the shell model), i.e., at N c -~ 2 e for the first-row and at N c ~- 2 
and N c _~ 10 e for the second-row elements. This result sheds light on the physical 
involvement of the electronic shell structure in a meaningful separation of an atom or 
ion into core and valence regions but should evidently not be taken too literally with 
Hartree-Fock wave functions. 

An alternate criterion is rooted in the properties of exchange integrals. Two- 
electron integrals carried out within appropriate spatial integration limits describe 
I1/rt21 interactions between electrons assigned to the core region ~-c and electrons 
associated with the valence space T v. This concerns both Coulomb and exchange 
integrals. Consider the sum, Kcv, which collects all the relevant exchange terms 
between the core electrons found in r c and the valence electrons found in T v. This sum 
can vanish, i.e., K cv = 0 is possible. (The function ls(1)2s(1)ls(2)2s(2), for example, 
can be positive or negative depending on whether r 1 and r 2 are on the same side or on 
opposite sides of the nodal surface. The final sign of this contribution thus depends 
on the locations of  the boundary and nodal surfaces.) Nonzero exchange integrals 
between individual electrons are a consequence of  their indistinguishability. It seems 
natural to argue that a group of  electrons should not be distinguished from another 
group of electrons if the total exchange between these groups is nonzero and that 
a vanishing Kcv should thus accompany a discrimination between core and valence 
electrons. Self-consistent field (SCF) calculations fully support this view. For the first- 
row elements, t he / ( cv  integrals vanish near the points corresponding to N ~ -~ 2 e. 
For the second-row elements, these integrals vanish near the points corresponding to 
N c = 2 and N c = l0 e. From nickel onwards, however, no boundary can be detected 
for N~= 28 e - an observation which is consistent with a relatively significant degree 
of  interpenetration, for third-row atoms, between the 3d, 4s, or 4p electrons and the 
3s or 3p electrons, as shown by Politzer and Daiker [16]. 

While it seems relatively straightforward to define core and valence electrons in 
the orbital space, things are visibly somewhat more involved in real space. Still it is 
certainly reassuring to find recognizable features suggesting a meaningful definition 
of  boundary surfaces. We shall test them numerically, but SCF results are not quite 
sufficient to do the job to our satisfaction. Here we use configuration interaction (CI) 
wave functions and an energy formula for E v deduced earlier [11]-[13] to get to the 
heart of the matter. 

3 In Thomas-Fermi  theory, the ground-state energy of a neutral atom with nuclear charge Z is [14, 15] 
E = _3 ~2,5~ where 

7~ "t '0' 

,'o ( ( , 
V(r) being the total electrostatic potential at the distance r from the nucleus. Politzer and Parr applied 
this Thomas-Fermi  formula to a hypothetical neutral atom containing (Z  - N c) electrons in the field 
of an expanded effective nucleus of radius r b = rmi n to get Eq. (2). 
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2 Core and valence electrons in real space: working formulas 

Let us briefly review the quantities involved in our core-valence partitioning. With 
reference to the partitioning surface defined by rb, the numbers of  core electrons, 
N °, and of valence electrons, N v, are readily obtained by adequately integrating the 
electron density p(r) between 0 and rb or between rb and cxz, respectively, using 
d N  = p dT= 47rr2p(r) dr. The nuclear-electronic potential energy, - Z  f[p(r) /r]  dT, 
is Vn~ for the N c core electrons and V~ for the N v valence electrons with kinetic 
energies T ° and T v, respectively, obtained by appropriate selections of the integration 
limits. 

Now we come to the two-electron integrals. The interelectronic repulsion, V~e, is 
split into three parts, namely: i) VeCe c = electron-electron repulsion concerning only 
the charges of  the core region, ii) Ve~ v, the repulsion between valence electrons, and 
iii) V~Ce v, the repulsion between the N c core and the N v valence electrons, with Vee = 
Ve~ c + Ve~ v + Ve~L Evaluation of these quantities involves integrations over the spatial 
coordinates of two electrons, say, electrons 1 and 2, with dT1 = rl 2 sin01 dOs dqD1 dr1 
and a similar expression for dT2. Let us write these integrals in shorthand notation, 
e.g., 

I = . . .  dT1 dT2 

for the full integration range, T1 and 72, of electrons 1 and 2, respectively. These 
two-electron integrals are conveniently separated into three contributions [11]-[13], 
namely 

f7 icc . . . . .  d'rl dT2 (3) 

I vv . . . .  dT1 dT2 (4)  

ff  f7 iev . . . .  d~-I dT2 + • .. d~-I dT2 (5) 

(with I = IC~+Ivv+u ~) for the calculation of the V co, Ve~ ~ and V~ v repulsion energies, 
respectively. This completes the breakdown of the kinetic and potential energies into 
core and valence contributions, for future use. 

In this work, the relevant energies are E v, the energy of the valence electrons, 
and E i°n, that of  the ion left behind upon removal of  the N v valence electrons, with 
E v + E i°n : E at°m, the ground-state energy of the parent atom. Clearly, E v is not 
simply the sum of the kinetic and potential energies of the electrons in the outer 
(valence) region, as one would calculate them from their stationary densities. The 
valence energy described here accounts for any relaxation that accompanies an actual 
removal of  the appropriate number of  valence electrons. From Hartree-Fock theory 
we get [11, 13] 

= g Vn v + V~ v + N~'Q (6) 
i 

where e~ is the eigenvalue of orbital i and N v the number of valence electrons of  this 
orbital. On the other hand [12, 13] 
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so that (6) becomes 

Nve~ = T v + V/; + 2re w + V~ (7~ 

i 

Ev 1 (T  v + 2VV) (8) 
= 5  

where V v = Vn v + V vv + VeCe v is the total potential energy of the valence electrons. 
Orbital eigenvalues are thus not directly involved in the energy formula giving E v. 
Finally, with E i°n = E at°m - -  E v w e  also get [13] 

E i o n  1 = ~ [TC+ 2(Vn~ + VCC)] . (9) 

E v and E i°n, Eqs. (8) and (9), are calculated as part of our numerical work and 
are amenable to detailed comparisons with data taken from experimental ionization 
potentials [17]. Most of  this work will be carried out with the help of  CI wave 
functions, thus aiming at the best possible answers that are presently within reach. We 
will learn about the constraints imposed upon Eqs. (8) and (9) - namely, as regards the 
admissible values of  N v - and narrow down on the essence and physical justification 
of the concept underlying the core-valence partitioning of electronic charge advocated 
here for ground-state atoms and ions. 

3 Outline of  CI calculations 

Our SDCI calculations were made using Hartree-Fock eigenfunctions 

, / / / "  

r~a. z,"'mi,~- 0 ^' (10) ~g x;-" 

# 

where .ill" is the dimension of the basis and g? a spin index. These basis functions 
consist of  a radial part, Ru(r) ,  and a real spherical harmonic angular part, i.e., 

= R~(r )  x "(0, ~p). 

The CI many-electron wave function • is written 

CF 

if" = Z Cs~s (11) 
8 

where CF is the space of possible configuration functions. The subspace differing by 
only one spin-orbital from ~s is CF ~ and CF" spans the subspace differing from ~s 
by two spin-orbitals. The methods employed here are not size consistent. 
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T w o - e l e c t r o n  i n t e g r a l s  

The calculation of the interelectronic repulsions, Vee, involves the two-electron oper- 
ator ]l/rx21 and thus the integral 

x sin01 sin02 dr 1 dr 2 d0~ d02 d~l d(P2 . (12) 

The integrals over ~ and 0 are carried out as usual, from 0 to 27r and from 0 to 7r, 
respectively. The integration limits for rl and r2 depend on whether we calculate Ve vv, 
V~ c or Ve cv. Any of these quantities is conveniently written 

~e  = J - K (13) 

using the familiar Coulomb and exchange integrals, J and K, respectively. Expansion 
of the SDCI wave function (11) using the C/as of Eq. (10) gives 

S 
j ~ r ~coul = ~u~A~ ~ (14) 

iV" 
K ~ r r~exch = ~ ~ u , o ~ o ~ .  (15) 

These equations hold for both SCF and SDCI wave functions. With the latter we 
obtain the following expressions for ~Fc°ulu~,~), and .rexchu~a." 

/~/coul 
uaA 

F exch 
uaA 

CF CF CF~ 

2peoul(s)+ECa ECt ,  (C;mCum, $2 Y2 
s s U < s  

CF CF~ ~ 
[r~O ~'-*f2 r~O',,~S2' t,7,f2 pS? f*O' f~S2'~ 

+ Z ~ Z ~,,, w . ~ . . . , ~ o ~  ,+ ~.~,-~.~-~o~,-~; (~6) 
S tt'<S 

CF CF CF'~ 
2 F~exch(s) Y2 g? $2 Y2 

= ~ . . . o ~  +~~,,(C.~C~m,+C'.m,C~)-~ ~'') 
s s U<s 

CF CF~ ~ 

ct,, ~.t_, . . ~  t_.Xm, ~ n  ~un, * U . m ,  c.;~r, t..an, ~.nJ 6nO,  (17)  + 

8, tH <S 

where 6nn, is the Kronecker delta. Only the first term on the right-hand side of 
Eqs. (16) and (17) survives in SCF calculations, with c o = 1. The Coulomb and 
exchange/" functions appearing in the first terms on the right-hand side of (16) and 
(17) are 

rcoul(s) 1 [ p ~ , F ~ 2  ' _ (SIC)~,~,A] (18) 
p,u o-A = 

r exch(~) 1 FX-" p-(~)pO(~) ] ~ -- ~ [ ~  .~, ,,. - (s ic);~. , ,~  (19) 
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the self-interaction correction (SIC) being 

and where 

occ~ 

(sic);.o  E E 12 12 12   = ul~i , .Jui . , .~o. i , ,JAi • 
(2 i 

occ~ 
F 1212 

= c ; , c t ,  
i 

OCCs f2 

. : .  = E E  " 12 s C ;  i Cu i . 
12 i 

(20) 

(21) 

(22) 

If s stands for a single excitation i --~ a, we get 

p12.-~a) p ;~  12 12 12 12 . .  = - c ; i c . ~  + c ; a c ; ~  (23) 
i--*a HF ( 'd2  (',12 t,~12 f'~12 12 12 12 12 (SIC)m,~;~ = (SIC)..~.x - ,_,~i,J~,C.~i,_,),i + C~aC~aC,.aC), ~ (24) 

where HF (SIC)~u,r) ~ is the Hart ree-Fock self-interaction correction, namely, 

OCC f2 
HF 12 12 12 

(SIC).~..;~ = S Z C~ iC~iC~'iC)'i" 
12 ¢ 

If, however, s stands for a double excitation / --* a and j --4 b, we have 4 

f )12( i , j - -~a ,b )  p12(i---*a) 12 12 3-2 12 
Izv ---- - , u  - -  C ; j C v j  + C ; b C ; b  ( 2 5 )  

( ~ T f ' ~ i , j " ' * a , b  i----~a 12t 12, 12, 12t f?'  12' 12' 12' ~.~,~,.~)~ = (SIC)~,.~,), - C ; j  C~j C~j  C I j  + C;b Cub C;b Cib • (26) 

Finally, the p s n t '  terms of Eqs. (16) and (17) are defined by 

OCCTN/t 
p snt' = Z S  1212 c;~c~ 

f2 i 

= ~ - C ; r ~ C ; m .  (27) P~u 12 12 

Equations (16)-(27) indicate how we can use the reduced second-order density 
matrix to get the required Coulomb and exchange integrals from Eqs. (14) and (15), 
using also the integral (12) with the appropriate limits of integration indicated in (3)-  
(5). Note that (15) defines exchange and reduces to the usual Hartree-Fock exchange 
with the use of SCF wave functions. The self-interaction corrections (20) which 
cancel in common evaluations of  o r - / (  are needed here to get the Kcv core-valence 
exchange. 

4 In Eq. (25) we have tacitly assumed that both excitations, i ~ a and j ~ b, are of the same spin. If  
this should not be so, one writes two equations (23), one for each excitation. No such spin restriction 
occurs in (26). 
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One-electron integrals 

The reduced first-order density matrix is involved in the evaluation of one-electron 
properties, where 0 is a one-electron operator, say, T, Vne or 1 for the electron density. 
The integral 

O = / k~* 0 ~ dr  (28) 

gives the value of that property. The integrations over 0 and (p are carried out as 
usual between 0 and 7r and between 0 and 27r, respectively. If the integrals over r are 
taken between 0 and r b we obtain the core-contribution to O, while integrals spanning 
the range from r b to oe represent the contribution of the valence region. With this 
understanding, we obtain from the SDCI wave function given by (11) that 

. / I / "  

o = Z (29) 
tt u<_l z 

where 
CF CF CF~ 

2 s 
+ (30) 

s s ~ t < s  

with P~,  as given by Eq. (22). Moreover, we have for single excitations i --~ a 

= - C~,~C.a (31) C'.~C.~ + 

where PS~ stands for the Hartree-Fock SCF value. Similarly, for double excitations 
i ~ a and j ~ b we write 

= _ ~o~Cs~ ~ ~'  s~' _]gi'J---'a'blzu P ~  --.a --.3 + C.b C.b " (32) 

This concludes the description of the required one-electron integrals. 

Comments 

The merit of Eqs. (16) and (17) met in our description of the second-order density 
coul exch matrix is in the fact that they express F ~ A  and F~,~,A in an explicit manner. Though 

their applications lead to the correct numerical results, it appears that in this form their 
programming does not turn to our advantage. An efficient file maintenance of two- 
electron integrals is of utmost importance and we must also consider that our analysis 
requires separate calculations of the Coulomb and exchange integrals. Hence, rather 
than using the methods proposed by Raffenetti [18] which are most useful in direct 
calculations of the difference ( J  - K), we implemented a segregation of two-electron 
integrals in the basis of atomic orbitals similar to that described by Billingsley [19], 
by taking full advantage of their symmetry properties. Moreover, important gains are 
made with the use of well-known standard methods [20] of 4-index transformations 
to reduce the number of operations required to cover all /z, u, cr and A indices. 
Generally speaking, standard methods were applied wherever possible but with our 
attention kept on the one- and two-electron integrals which - in contrast with the 
usual situation - are made only for specified core and valence regions in real space. 
Computational details may be found in ref. [21]. 



Core and valence-region energies of atoms 195 

4 Basis functions 

The 6-311G* basis developed by Pople and coworkers [22, 23] - the smallest one used 
in our calculations - was selected as a convenient reference. It was used for all atoms 
from Li through Ar. For the first-row atoms we have also used van Duijneveldt's 
(13s 8p) basis [24] augmented with d and f functions taken from [25]. 'Atomic 
Natural Orbital' (ANO) bases [26], namely [27] 

ANO(lOs4p3d) ~ ANO[6s4p3d] (Li, Be, Be +) 

ANO(lOs6p3d) -+ ANO[7s6p3d] ( B - N e  and ions) 

ANO(14s9p4d3f) -* ANO[5s4p3d2f] ( L i - N e  and ions) 

ANO(17s l2p5d4f) -+ ANO[5s4p3d2f] (Na -Ar )  

were used in comparisons between the first-row atoms and their positive and nega- 
tive ions and for Na-Ar. The coefficients, c a, of Eq. (11) were calculated with the 
GAUSSIAN 90 program [23]. 

5 Results 

Consideration of our core-valence electron partitioning in ground state atoms and ions 
raises the question about the energy of the outer electrons that could be measured by 
the energy required to remove them. This entails the notion of integer numbers of 
electrons in both the core and valence regions because electrons cannot be removed 
in fractional amounts. The valence-region energy formula advocated here, Eq. (8), 
is examined on this basis. The selection of a physically meaningful core-valence 
partitioning thus revolves about the selection of the appropriate integer numbers of 
core and valence electrons associated with their respective spatial regions. Numerical 
results are here to guide us. 

To begin with, let us consider the minima of the radial distribution function, 
D(r) = 4~rr2p(r), and examine whether this criterion permits a valid separation into 
core and valence regions with integer electron populations. SCF analyses [9] using 
the near-Hartree-Fock wave functions of Clementi [28] indicate that the numbers 
of electrons found in the inner shell extending up to the minimum of the radial 
distribution function D(r) amount to N c = 2.054 e (Be), 2.131 (C), 2.186 (O), 2.199 
(F) and 2.205 electron (Ne). Our SDCI results, obtained with the (13s 8p2d l f )  basis, 
are virtually the same, with N c values of 2.059 (Be), 2.134 (C), 2.189 (O), 2.203 (F) 
and 2.206 electron (Ne). The results of Smith et al. [29] bearing on the boundaries in 
position space that enclose the exact electron number given by the Aufbau principle 
surely support the idea of 'physical' shells compatible with that principle. The maxima 
of D(r), on the other hand, also appear to be topological features indicative of shells: 
their positions correlate well with the shell radii from the Bohr-Schr6dinger theory 
of an atom [30]. The critical points in %TZp(r), in contrast, though highly indicative 
of atomic shells in a qualitative sense, are not suitable for defining meaningful shell 
boundaries [31]. So, on the basis of these results, we shall keep in mind that the radial 
distribution function offers a vivid pictorial reference suggesting an involvement of 
the electronic shell structure in the separation of core and valence regions in atoms, 
but also that one should definitively not attempt to carry this picture too far. 

Hence we direct our attention to the core-valence exchange terms or, more pre- 
cisely, to Kcv, the sum of all exchange integrals between the N c core and the N v 
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va lence  electrons.  K cv depends on the radius selected for the inner core region and so 
does N c, o f  course. Thus we  can represent  K ~v as a funct ion o f  N C. Two examples  are 
offered in Figs. 1 and 2: the results for neon are typical  for first-row atoms, those of  
argon are representat ive  for second-row elements:  for the first-row elements ,  K cv ~ 0 
for N C = 2 e whereas,  for the second-row atoms, K ~v ~ 0 for N c = 2 and N c = 10 e 5. 
Table 1 examines  this point  a little more  in detail. For  comparison,  we offer the S C F  
results obtained with the nea r -Har t r ee -Fock  wave  functions of  Clement i  and Roett i  
[32] and the S D C I  results obtained with the 6 -311G*,  A N O  and (13s 8p 2d l f )  bases. 
It  is clear that the K cv integrals c losely approach zero when N ~ = 2 and N c = 10 e. 
To appraise the s ignif icance o f  this result, we must  compare  it with the total exchange,  
K t°tal, calculated for the entire atom. K t°tal is small,  o f  course, for li thium, 0.0220 

au, but increases rapidly with the size of  the atom: 0.0587 (Be), 0.6396 (C), 1.2801 
(O) and 2.3758 au (Ne) in the (13s 8p2d l f )  basis, with CI. Briefly,/~total is certainly 
sufficiently large to brand K cv as a negl ig ible  quantity, in comparison.  Surely, this 
a rgument  applies afortiori also to the second-row elements  where  the total exchange  

integrals are still larger, up to ~ 7.82 au for argon. 

Table 1. Kcv exchange energies, atomic units 

Atom N c near-HF SCF a 6-311G* ANO b (13s 8p 2d lf) 

Li 2 -0.0027 -0.0024 -0.0021 
Be 2 -0.0148 -0.0136 -0.0130 
B 2 -0.0254 -0.0229 -0.0215 
C 2 -0.0347 -0.0303 -0.0282 
N 2 -0.0404 -0.0327 -0.0308 
O 2 -0.0471 -0.0401 -0.0363 
F 2 -0.0488 -0.0397 -0.0363 
Ne 2 -0.0449 -0.0297 -0.0019 
Na 10 0.0050 0.0064 0.0053 
Mg 10 0.0118 0.0128 0.0124 
A1 10 0.0158 0.0183 0.0174 
Si 10 0.0171 0.0211 0.0204 
P 10 0.0138 0.0182 0.0189 
S I0 0.0019 0.0275 0.0077 
C1 10 -0.0186 -0.0111 -0.0098 
Ar 10 -0.0450 -0.0075 -0.0358 

-0.0017 
-0.0127 
-0.0116 
-0.0155 
-0.0167 
-0.0206 
-0.0142 
-0.0003 

aCalculated with Slater bases near the HF limit given by Clementi and Roetti 
[32] 

bContracted ANO(10s 6p 3d) ~ ANO[7s 6p 3d] bases were used for the series 
B-Ne and ANO(17s 12p5d4f) --*ANO[5s4p3d2f] for Na-Ar. For Li and 
Be we used the ANO(10s 4/93d) ~ ANO[6s 4p 3d] basis sets [27] 

Yet it is difficult  to ascertain conclus ive ly  whether  small  differences of  this sort 
be tween  K ev and 0 s tem f rom the incompleteness  of  our CI  wave  functions or whether  
they are (at least  partly) genuine.  So, whi le  small  departures f rom 0 cannot  be entirely 
ruled out for K cv in situations where  N c is exactly 2 or 10 e, depending on what  
atom (or ion) we  are talking about, it seems fair to c la im that the cri terion rest ing 
on vanish ing  c o r e - v a l e n c e  exchange  integrals clearly establishes the identity o f  the 

5 SCF results obtained with near-Hartree-Fock wave functions [32] indicate similar patterns for Ti, Cr, 
Fe, Ni, Zn, Ge, Se and Kr, namely 'almost' vanishing Kcv integrals for N c = 2 and N c = 10 e. A 
third point exists for krypton, for N c = 28 e, where K cv reaches a minimum [13]. 
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Fig. 2. Argon. Kcv vs. N c (au), from 6 -  
311G* SCF and SDCI calculations 

Table 2. Selected kinetic and potential valence-region energies of C, F and Ne, au a 

Atom N c Ve vv VdCe v V~ v T v 
E v 

Calcd. Exptl.b 

C 1 6.4902 4.5741 -36 .1302 4.2833 -15.283 -19 .849 
2 2.9648 5.7358 -18 .0060 2.4073 -5 .401 -5 .440  
3 1.3611 4.6819 -10 .4404 1.1533 -2 .547  -3 .070  

F 1 26.0057 10.9725 -119.1931 20.9946 -47 .812 -59.268 
2 16.8157 16.1570 -76.1107 13.4101 -24.289 -24 .212 
3 10.9430 16.9484 -54.3146 8.7695 -14 .692 -17 .406 
4 6.8605 16.0133 -39.6055 4.6120 -9 .617  -11.631 

Ne 1 37.0049 13.7487 -163.0250 30.8793 -64.554 -78.991 
2 25.3052 20.8567 --109.1037 20.3326 -35 .184 35.045 
3 17.4010 22.8145 -80.7045 13.8571 -22 .374 -26.258 
4 11.6797 22.5013 -61.1987 8.0261 -15.336 -18.641 
5 7.3925 20.6915 -45.6632 4.2586 -10.300 -12 .837 

aSDCI results in the (13s 8p2d l f )  basis 

bTaken as the appropriate sum of ionization potentials [17], with a change in sign, using 1 au = 27.2106 eV 
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Table 3. Kinetic and potential energies of the first-row atoms (N c = 2) and the second-row atoms (N c = 
10 e), atomic units a 

Atom VeCe c Ve vv VeCe v V c VnVe T c T v 

Li 1.6174 0 .0081 0 . 5 7 8 4  -16.2393 -0.9096 7.4324 0.0389 
Be 2.3332 0 .3032  1 .7515  -30.0516 -3.6493 14.3719 0.2829 
B 3.0719 1 .1829 3 . 4 3 5 6  -48.0011 -8.9679 23.6486 0.9896 
C 3.8478 2 .9648  5 . 7 3 5 8  -70.1906 -18.0060 35.4146 2.4073 
N 4.6542 5 .9548  8 .6533  -96.6515 -31.7282 49.7337 4.8191 
O 5.4836 10.4663 12.0894 -127.4387 -50.6457 66.6739 8.3430 
F 6.3368 16.8157 16.1570 -162.5434 -76.1107 86.2549 13.4101 
Ne 7.2116 25.3052 20.8567 -201.9912 -109.1037 108.5209 20.3326 
Na 63.0164 0 .0174  2 .6155  -386.4863 -2.9412 161.8040 -0.0022 
Mg 72.4138 0 .2761 6 .8239  -470.5155 -8.3516 199.4997 0.0931 
A1 81.7977 0 .8802 11.8548 -562.8752 -15.6824 241.5790 0.4109 
Si 91.2371 2 .0036 18.2746 -663.5598 -25.9963 288.0276 0.9874 
P 100.7850 3.7707 25.9897 -772.8109 -39.5719 339.0543 1.8831 
S 110.4249 6.3891 34.7978 -890.6209 -56.4650 394.6717 3.0926 
C1 120.2331 9.9433 44.9168 -1016.8571 -77.3888 454.7887 4.7198 
Ar 130.0772 14.6332 56.4206 -1152.1142 -102.8540 519.9928 6.8324 

aSDCI results obtained with the (13s 8p2d If) basis for LiNe and with the 6-311G* basis for the series 
Na-Ar 

core and valence regions: N ~ = 2 (or N ° = 10) e are the only acceptable solutions 
in applications of Eqs. (8) and (9) in spite of the possibly approximate nature of our 
identification. 

This analysis carries a strong conjecture regarding the uniqueness attached to the 
constraint K cv = 0, namely as concerns the validity of our Eqs. (8) and (9). Typical 
examples, carbon, fluorine and neon, nicely illustrate this point. Table 2 reports their 
kinetic and potential valence-region energy components for N c = 1, 2, 3, . . .  electron 
and the corresponding E v values given by Eq. (8): experimental data unmistakably 
pick N c = 2 e as the correct solution. Similar tests pick both N c = 2 and N c = 10 e 
for the second-row elements. These constraints are henceforth incorporated into the 
presentation of our results. 

Table 3 reports the relevant kinetic and potential core and valence energy com- 
ponents of the first- and second-row atoms, for use in Eqs. (8) and (9). These are 
SDCI results obtained with the (13s 8p2d If)  basis taking N c = 2 e for the atoms 
Li-Ne and with Pople's 6-311G* basis for the second-row, with N c = 10 e. Similar 
SDCI results were also obtained for the first-row elements using the 6-311G* basis. 
Positive and negative ions, A + and A - ,  respectively, as well as their parent first-row 
ground state atoms are examined in Table 4 with the help of A N t  wave functions. 
The results obtained for the neutral atoms turn out to be close to those deduced with 
the 6-311G* basis. The merits of the density matrix averaged atomic natural orbital 
( A N t )  basis sets [26] lie, in this particular context, in their construction [27, 33] 
which includes by design functions that describe the deformation of the atomic or- 
bitals when cations and anions are formed. These sets are, indeed, known to perform 
well at the correlated level for the atomic ionization potentials and electron affinities 
[27] - a circumstance that motivated our selection of A N t  bases in this instance. 

The E v and E i°n energies are given in Tables 5 to 7. They vividly illustrate the 
general validity of our master formulas, Eqs. (8) and (9). It is of particular interest 
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Tab le  4. Kinet ic  and potential  energies o f  selected first-row atoms and ions, A - ,  A and A +, calculated for  

N c = 2  electron us ing  A N O  (Atomic  Natural  Orbital)  basis sets a, a tomic units 

A t o m  
or Ion V~c Very V~V VnC~ V~ T ~ T v 

Li 1.6604 0 .0080 0 .5769 - 1 6 . 2 2 6 6  - 0 . 9 0 5 9  7.3991 0 .0388 
Be + 2 .3359 0 .0183 0 .9382 - 2 9 . 8 6 7 4  - 1 . 9 9 1 6  14.1461 0 .1244 

Be 2 .3715 0 .3009 1.7488 - 3 0 . 0 2 5 0  - 3 . 6 4 2 2  14.3277 0 .2830 
B + 3 .0517 0 .4506 2 .4905 - 4 8 . 1 2 9 6  - 6 . 5 2 0 5  23 .6804 0 .6425 
B 3 .0757 1.1824 3.4308 - -47 .9861 - 8 . 9 5 5 5  23 .6274 0 .9906 

B -  3 .0742  1.9222 3.9853 - 4 7 . 8 9 3 1  - 1 0 . 3 5 0 5  23.5416 1.0827 
C ÷ 3 .8308 1.6554 4 .6193 - 7 0 . 3 4 7 2  - 1 4 . 5 5 7 9  35.4638 1.9272 
C 3.8513 2 .9652  5 .7284 - 7 0 . 1 7 0 8  - 1 7 . 9 8 2 8  35.3696 2 .4224 

C -  3 .8510 4 .2435 6.4621 - 7 0 . 0 4 0 9  - 2 0 . 2 0 2 0  35.2478 2 .5840 

N ÷ 4 .6395  3.9288 7 .3666 - 9 6 . 8 3 7 7  - 2 7 . 1 1 3 5  49 .8039  4 .1905 
N 4 .6572  5 .9570 8.6440 - 9 6 . 6 2 7 5  - 3 1 . 6 9 4 2  49 .6647 4 .8489  

N -  4 .6568  7 .7554 9.3981 - 9 6 . 5 1 4 6  - 3 4 . 3 2 7 9  49 .5478 4 .9634  
O ÷ 5.4741 7 .5795 10.7374 - 1 2 7 . 6 2 7 9  - 4 5 . 1 6 6 4  66.7252 7 .7560 

O 5.4863 10.4670 12.0720 - 1 2 7 . 4 1 0 2  - 5 0 . 5 7 1 7  66.5554 8.3989 
O -  5.4861 13.0336 13.0013 - 1 2 7 . 2 6 7 4  - 5 4 . 2 8 8 5  66.4056 8 .5942 

F ÷ 6 .3274  12.9919 14.6403 - -162 .7498  - 6 9 . 1 9 6 9  86.2958 12.6702 
F 6 .3389  16.8137 16.1354 - 1 6 2 . 5 0 8 1  - 7 6 . 0 0 6 5  86.0961 13.4855 
F -  6 .3392  20 .2600  17.2308 - 1 6 2 . 3 3 5 4  - 8 0 . 9 4 4 7  85.9143 13.7849 

Ne + 7 .2020  20 .4025  19.1743 - -202 .2133  - 1 0 0 . 5 8 4 9  108.5670 19.4064 
Ne 7 .2128 25 .2949  20 .8303 - 2 0 1 . 9 4 5 1  - 1 0 8 . 9 6 2 1  108.3344 20.4093 

aThe  a toms B - N e  and their  ions were  calculated with the A N O [ 7 s  6p 3d] basis [27]. For  Li, Be and Be +, 

however ,  we  used the A N O ( 1 0 s  4 p  3d)  - -+ANO[6s  4/93d] basis given in [27] 

Tab le  5. Compar i son  be tween the calculated a and experimental  energies of  the valence electrons, E v, and 

o f  the 2-electron ions, E i°n, atomic  units 

A tom 
6 - 3 1 1 G *  (13s 8p2d I f )  Exptl.  b 

E v Eion E v Eion E v Eion 

Li - 0 .201 - 7 .242 - 0 .202 - 7 .270 - 0 .198 - 7 .280 
Be - 0 .965 --  13.662 - 0 .969 - 13.688 - 1.012 - 13.657 
B - 2 .560  --  22 .047 - 2 .570 --  22 .070 - 2 .623 - 22 .035 

C - 5.381 - 32 .404  - 5.401 --  32 .424 - 5 .440  - 32 .416 
N --  9 .774  - 44 .735  - 9 .807 - 44 .754  - 9 .810 - 44 .802  

O --  15.893 --  59 .056  - 15.946 - 59 .079 - 15.916 - 59 .194  
F - 24 .219  --  75 .358 - 24 .289 - 75 .386 - 24 .212 - 75 .595 
Ne - 35 .098  --  93 .642  - 35 ,184 --  93 .679 --  35.045 - 94 .006  

aResul ts  obtained f rom Eqs. (8) and  (9) for  E v and E i°n, respectively,  using the input data  given in Table 3 

for  van  Dui jneve ld t ' s  (13s  8p2d l f )  basis (with d and f funct ions f rom [25]) and similar  data  (not reported 
here) deduced  with the help o f  Pople ' s  6 - 3 1 1 G *  basis set 

bTaken  as the appropr ia te  sums of  exper imental  ionization potentials [17], with a change  in sign, using the 
convers ion fac tor  1 a tomic  unit  = 27 .2106  eV 
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Table 6. Comparison between the calculated and experimental energies of the valence electrons, E v, and 
of the 2-electron ions, E i°n, of selected first-row atoms and ions A - ,  A and A +, using contracted ANO 
basis sets, atomic units 

Atom/Ion ANO[7s  6p 3d] a ANO[5s  4p 3d 2f] Experimental  b 

E v Eion E v Eion E v Eion 

Li - 0.201 - 7.244 - 0.201 - 7.234 - 0.198 - 7.280 
Be + - 0.649 - 13.639 - 0.647 - 13.625 - 0.669 - 13.657 
Be - 0.967 - 13.660 - 0.969 - 13.648 - 1.012 
B + - 2.172 - 22.158 - 2.172 - 22.124 - 2.318 - 22.035 
B - 2.565 - 22.064 - 2.566 - 22.030 - 2.623 
B -  - 2.601 - 22.032 - 2.602 - 21.997 - 2.634 
C + - 4.880 - 32.523 - 4.883 - 32.484 - 5.026 - 32.416 
C - 5.385 - 32.423 - 5.397 - 32.382 - 5.440 
C -  - 5.470 - 32.377 - 5.480 - 32.338 - 5.486 
N + - 9.149 - 4 4 . 8 6 4  - 9.156 - 4 4 . 8 2 0  - 9.276 - 44.802 
N - 9.779 - 44.759 - 9.801 - 4 4 . 7 1 1  - 9.810 
N -  - 9.795 - 44.723 - 9.817 - 44.681 - 9.805 
O + - 15.314 - 59.194 - 15.340 - 59.134 - 15.416 - 59.194 
O - 15.889 - 59.098 - 15.941 - 59.033 - 15.916 
O -  - 15.971 - 59.052 - 16.019 - 58.994 - 15.970 
F + - 23.486 - 75.516 - 23.535 - 75.446 - 23.572 - 75.595 
F - 24.210 - 75.414 - 24.286 - 75.339 - 24.212 
F -  - 24.374 - 75.359 - 24.438 - 75.339 - 24.339 
Ne + - 34.203 - 93.819 - 34.309 - 93.724 - 34.252 - 94.006 
Ne - 35.088 - 93.710 - 35.179 - 93.635 - 35.045 

aFor Li, Be and Be +, however, we used the ANO[6s  4p 3d] basis recommended in [27] 

bTaken as minus the appropriate sums of ionization potentials [17] and electron affinities given in [34] for 
C, [35] for N, [36] for O, and in [37] for F, using the value (0.3 eV) calculated by Clementi  and McLean 
[38] for boron 

t h a t  t h i s  h o l d s  f o r  integer n u m b e r s  o f  e l e c t r o n s ,  N v a n d  N ~, a s s i g n e d  t o  t h e  i n d i v i d u a l  

v a l e n c e  a n d  c o r e  a t o m i c  r e g i o n s :  E v a n d  E i°n a r e  o b s e r v a b l e s .  

W h i l e  t h e  r e l a t i v e l y  m o d e s t  6 - 3 1 1 G *  s e t  g i v e s  a c c e p t a b l e  r e s u l t s  f o r  t h e  f i r s t - r o w  

e l e m e n t s ,  t h i n g s  u n d e r s t a n d a b l y  d e t e r i o r a t e  i n  t h e  s e c o n d  r o w ,  p a r t i c u l a r l y  f o r  t h e  

l a r g e r  a t o m s .  O u r  r e s u l t s  a r e  j u s t  ' f a i r '  f o r  a t o m s  l a r g e r  t h a n  a l u m i n i u m  b u t  n o n e  t h e  

l e s s  s u f f i c i e n t l y  c l e a r  t o  s u p p o r t  t h e  b a s i c  t e n e t s  u n d e r l y i n g  E q s .  ( 8 )  a n d  (9 )  a n d  o u r  

c r i t e r i o n  d e f i n i n g  c o r e  a n d  v a l e n c e  r e g i o n s .  O f  c o u r s e ,  p a r t  o f  t h e  p r o b l e m  i s  w i t h  t h e  

r e l a t i v e l y  m o d e s t  s i z e  o f  t h e  b a s i s  s e t s  w h i c h  w e r e  e m p l o y e d  - t h e  A N O [ 5 s  4 p  3 d  2 f ]  

r e s u l t s  a r e  n o t  s i g n i f i c a n t l y  d i f f e r e n t  f r o m  t h o s e  g i v e n  b y  t h e  6 - 3 1 1 G *  b a s i s  - b u t  

r e l a t i v i s t i c  e f f e c t s  a n d  s i z e - c o n s i s t e n c y  c e r t a i n l y  o u g h t  t o  b e  t a k e n  i n t o  c o n s i d e r a t i o n  

a t  t h i s  p o i n t .  R e l a t i v i s t i c  c o r r e c t i o n s  t o  t h e  t o t a l  e n e r g y  a r e  a l w a y s  n e g a t i v e  f o r  t h e  

g r o u n d - s t a t e  c o n f i g u r a t i o n s  o f  a t o m s .  I n  D a t t a ' s  c a l c u l a t i o n s  [39 ]  t h e y  a m o u n t  t o  

- 0 . 0 1 6 3 4  a u  f o r  c a r b o n ,  - 0 . 0 5 5 7 7  a u  f o r  o x y g e n  a n d  - 0 . 1 4 4 8 2  a u  f o r  n e o n ,  t o  c i t e  a 

f e w  e x a m p l e s .  T h e s e  c o r r e c t i o n s  g r o w  r a p i d l y  w i t h  t h e  s i z e  o f  t h e  a t o m s ,  e . g . ,  - 0 . 4 0 9  

(A1) ,  - 0 . 7 7 1  ( P ) ,  - 1 . 0 2 4  (S ) ,  - 1 . 3 3 9  (C1) a n d  - 1 . 7 2 2  h a r t r e e  f o r  a r g o n  [ 4 0 ]  a n d  

b e c o m e  n u m e r i c a l l y  m o r e  i m p o r t a n t  t h a n  p o s s i b l e  i m p r o v e m e n t s  i n  C I  c a l c u l a t i o n s  - 

a f a c t  w e l l  w o r t h  r e m e m b e r i n g  i n  t h e  a s s e s s m e n t  o f  e n e r g y  r e s u l t s  l i k e  t h o s e  p r e s e n t e d  

h e r e  f o r  t h e  h e a v i e r  a t o m s .  

O u r  f o r m u l a  f o r  t h e  v a l e n c e - r e g i o n  e n e r g y  i n  r e a l  s p a c e ,  E v ! ~ T V  = 3" + 2 V V ) '  

m e a s u r e s  t h e  e n e r g y  r e q u i r e d  f o r  t h e  a c t u a l  r e m o v a l  o f  t h e  e l e c t r o n s  w h i c h  a r e  c o r n -  
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Table 7. Comparison between the calculated and experimental energies of the valence electrons, E v, and 
of the corresponding ions, E i°n, of the second-row atoms, assuming either N c = 2 e or N c = 10 electron, 
atomic units 

Atom N c 
6-311 G* ANO[5s 4p 3d 2f] Experimental a 

EV Eion Ev Eion )~,v Eion 

Na 10 - 0.206 - 161.712 - 0.204 -161.625 - 0.189 -162.240 
2 - 47.923 - 113.995 - 47.780 -114.049 - 47.997 -114.432 

Mg 10 - 0.803 -198.901 - 0.809 -198.796 - 0.834 -199.477 
2 - 63.218 - 136.486 - 63.064 -136.540 - 63.436 -136.874 

A1 10 - 1.828 - 240.192 - 1.832 -240.069 - 1.957 -240.756 
2 - 80.999 - 161.021 - 80.838 -161.063 - 81.376 -161.337 

Si 10 - 3.483 - 285.539 - 3.489 -285.403 - 3.790 -286.079 
2 - 101.447 - 187.575 -101.275 -187.617 -102.046 -187.823 

P 10 - 5.913 - 334.999 - 5.924 -334.852 - 6.497 -335.451 
2 - 124.749 - 216.163 -124.570 -216.206 -125.609 -216.339 

S 10 - 9.155 - 388.573 - 9.186 -388.409 - 10.163 -388.874 
2 - 150.938 -246 .790  -150.761 -246.834 -152.150 -246.887 

C1 10 - 13.446 -446.153 - 13.489 -446.114 - 15.026 -446.356 
2 - 180.137 - 279.462 -180.115 -279.489 -181.910 -279.473 

Ar 10 - 18.923 - 508.027 - 18.977 -507.985 - 21.232 -507.882 
2 - 212.819 - 314.131 -212.789 -314.173 -215.013 -314.102 

aTaken as minus the appropriate sums of experimental ionization potentials [17] 

m o n l y  k n o w n  as ' v a l e n c e  e l e c t r o n s '  in t he  f a m i l i a r  she l l  m o d e l .  Th i s  e n e r g y  t akes  

t h e  c o n c u r r e n t  c o r e  r e l a x a t i o n  in to  accoun t .  T h e  s i m p l e  s u m  o f  t h e  k i ne t i c  and  p o -  

t en t ia l  e n e r g i e s  o f  t he  N v e l e c t r o n s  f o u n d  o u t s i d e  the  b o u n d a r y  d e f i n e d  by  r b, i .e.,  

T v + V v, in  con t r a s t ,  d e s c r i b e s  a h y p o t h e t i c a l  i o n i z a t i o n  tha t  w o u l d  s i m p l y  s k i m  o f f  

t h e  e l e c t r o n i c  c h a r g e  f o u n d  in t he  o u t e r  r e g i o n  w i t h o u t  a l l o w i n g  a n y  r e l a x a t i o n .  T h e  
d i f f e r e n c e  b e w e e n  T V +  V v a n d  E v, i .e.,  AEre la  x = ½(2TV + VV), m e a s u r e s  t he  r e l ax -  

a t i on  a c c o m p a n y i n g  t h e  ac tua l  r e m o v a l  o f  t he  v a l e n c e  e l e c t r o n s  f r o m  a g r o u n d - s t a t e  

neu t r a l  a t o m  or  i ts  ions .  T h e  s u m s  ( T  v + V v) - w h i c h  are  eas i ly  d e d u c e d  f r o m  Tab les  

3 a n d  4 - d i f f e r  s i g n i f i c a n t l y  f r o m  t h e  c o r r e s p o n d i n g  E v e n e r g i e s  a n d  t h e  r e l a x a t i o n  is 

i m p o r t a n t ,  e .g . ,  Amrela x = - 1 . 4 9 7  au fo r  c a r b o n ,  - 3 . 8 0 1  au fo r  o x y g e n  and  - 7 . 4 2 6  
au fo r  n e o n .  Su r e ly ,  t h e  e n e r g y  r e p r e s e n t e d  b y  ( T  v + VV), w h e r e  T v and  V v are  g i v e n  

in rea l  spa c e ,  s h o u l d  n o t  b e  m i s t a k e n  fo r  a physical v a l e n c e - r e g i o n  e n e r g y ,  i .e. ,  an  
e n e r g y  tha t  c o u l d  b e  ac tua l l y  m e a s u r e d .  O n l y  E v and  E i°n are  p h y s i c a l :  the i r  na t u r e  is 

c o n v i n c i n g l y  d e m o n s t r a t e d  b y  the  e x p e r i m e n t a l  da t a  o f f e r e d  fo r  c o m p a r i s o n  in Tab les  
5 - 7 .  

6 Conclusions 

T h e  f o r m u l a  g i v i n g  t h e  v a l e n c e - r e g i o n  e n e r g y  in real space, E v = ½ ( T  v +2VV) ,  s h a r p l y  

d i f f e r s  f r o m  tha t  a p p l i c a b l e  in t h e  orbital space w h e r e  the  v a l e n c e  e n e r g y  is j u s t  t he  

s i m p l e  s u m  o f  t h e  p e r t i n e n t  e l e c t r o n i c  k ine t i c  and  p o t e n t i a l  e n e r g i e s .  T h e  r e l e v a n t  
k ine t i c  a n d  p o t e n t i a l  e n e r g i e s  a re  e v i d e n t l y  n o t  t he  s a m e  in t he  orb i ta l  a n d  in rea l  

space .  T h e y  p r o c e e d  f r o m  i n t e g r a t i o n s  o v e r  t he  ful l  c o o r d i n a t e  s p a c e  in t he  f o r m e r ,  

c o n t r a s t i n g  w i t h  i n t e g r a l s  s p a n n i n g  a p p r o p r i a t e  p o r t i o n s  o f  t he  to ta l  s p a c e  fo r  u s e  in  
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E v = l ( T v  + 2VV). Yet, under  well  specified condit ions one gets the same results in 
both approaches.  

In the orbital space, the core-va lence  separation o f  electrons is made  with reference 
to some  proper ty  (orbital  energy or  principal  quantum number)  but in real space this 
segregat ion is made  solely with reference to the admissible number,  N c, of  core 
electrons.  The  uniqueness  o f  this part i t ioning in real space (which carries over  in 
orbital space where  the va lence  energies  are the same) goes back to E v which accepts 
only discrete  solutions,  namely  with N c = 2 e for the first-row elements  or N c = 2 and 
10 e for the second row, i.e., anyt ime the exchange  integrals be tween  the core- and 
the va lence- reg ion  electrons are down to zero. For  any other N ~, large discrepancies  
are found be tween  the calculated E v values and the corresponding ionization potential  
sums. 

We conclude  that the agreement  be tween  E v and the sum of  the ionizat ion poten-  
tials is s ignif icant  and that it provides  strong support  for the content ion that physical ly  
meaningfu l  cores are defined in real space by taking N c = 2 e for the first-row atoms 
and N c = 2 or 10 e for the larger elements .  
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